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METHODS OF DMTERMIN•IG NATURAL MODES AND FE~IM CIZS 01F

TPA1SVERSE VIBBATIONS OF B3ZAMS

CRAPTER I

LNTRODUCT I ON

Much effort has been spent in finding exact solutions of the

differential equations of vibration problems. In only the simplest of struc-

tures, viz, the uniform beam, is it possible to determine rigorous solutions

that include the effects of rotary inertia and shear resistance of the beam.

For beams whose cross section varies in a simple manner along the axis of the

beam it is possible, thouagh somewhat difficult to obtain exact solutions that

include the effects of rotary inertia. For arbitrary variation of the mass-

density distribution and arbitrarily changing elastic properties along the

axis, even if they are expressible in analytical form, it has not been found

possible to obtain exact solutions. Consequently the emphasis of this report

lies in obtaining approximate analytical methods rather than in working out

the solutions of the differential equations of a class of beams with, say,

cross sections that vary according to sirmle analytical functions along the

axis of the beam. The differential eq'ation of the problem will be developed

and it will be seen that it does not lend itself readily to the determination

g of approximate numerical solutiones It is =,ch more advantageous to set up

the problem in its integral equation representation, because integral ecpua-

tions can easily be solved by approxLate methods. The reason lies in the

entirely different approach that leads to the integral equations in contrast

with the differential equation zethods. The differential equation ;ccnsiders

AZRO.ELASTIC AND STRUCTURES RESEARCH
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Sthe elastic structure in its elements! it studies the motions of a particle

of the aggregate that makes up the structure and builds up - by Integration -

the motions of the stracture as a whole. These must be comnatible with the

conditions of support, and it is here that the real difficulty arii laborious-

ness of the differential equation procedure enters: the solution of the bounda=

ry-value problem, or the evaluation of the constants of Integration. The

integral equation considers the elastic body as a whole and it has, so to

speak, all the boundary conditions of the problem written into it. It is true,

that it builds up the motions of the body from "elements", but these are not

those of isolated particles but simple motions of the whole structure. The

integral eqpations are not the only ones that consider the body as a whole,

for the variational methods, better known to the engineer as energy methods,

also formulate the problem for the body as an entity, and it is convenient to

say that mechanical problems of vibrations can be stated in either differen-

tial form or in integral form. Here, attention is focused on the integral

formulat ions.

A few comments have to be made about the term "exact solution" that

has been mentioned above, i.e. it has to be stated ucnder what set of condi-

tions an analytical solution shall be called exact. The ecuations of the

problem shall be linear. This limits the magnitude of vibrations to so-called

small vibrations and. it requires linear stress-strain relationship. ParthSr-I ore the sL-plified beam theory shall be valid. This means that zhe Bernoulli-

Navier hwpothesis - plane sections which are normal to the undeformed elastic

axis remain plame and norral to the deformed elastic axis - is valid, and thýs

any exact solution is not rigorous in the sense of the mathematIcal theory of

S ARO-FLASTIC AND STRUCTURES RESEARCI-H



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Aeronautical Enneering

CONTRACT NO.N5 or - 07833 PAGE 3

elaaticity, as the wraiplag of the cross sections has been neglected. (Sec
Chapter III also.)

The following section demonstrates a few mathematical principles

that will frequently be drawn upon in the ensuing analysis.

AI

SAERO.EI ASTIC AND) STRUCTURES RESEARCH
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1. Notations, Matrix Calcul.s

Matrix calculus will be used extensively in the following sections.

Thus it is necessary to list the notations that are used in this paper. They

are in accord. with continental practice, offer the advantage of sinplicity and

economy of print, and are closely related with indicial notation.

In inzdicial notation - as it is used hereafter - the convention is

established that, if an index occurs more than once in a product, a snmmation

over the index is to be carried out over a number of integers ranging from one

to n, unless otherwise specified.

For example:

=~ ~ LZbZ a > &~t~~4

-- ,a,( ,,4 ... - 4A., ... + -,,Q,<~~~'¼ ~~ e,/Lj, /r) U

S(il

The ranges of the indices ,J, k,J1 shall be n1 , n2 , n3 , n 4 , respectively.

Matrices are designated by arabic capitaIs; vectors, that is,

matrices with either one row or one colun only, by lower case arabic letters.

Row-vectors have superscrints, column-vectors have subscripts. Bold face

letters (or unaerlined letters) shall be used where confusion of matrices

S wish their elements Is i ossible. The following are equlvaleat notations of

AE .RO-.LA , .,, A.aNv STenRUC-Ojl..-,- rn. .IED RCH
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an m-row ncoltumn matrix, or an m by n matrix:

Y 0L, ae: .. ,A, ,

Salso: 2r , r,, , (s, a (

Multiplication of a matrix by a scalar, - as multiplication of every element

of the matrix by the scalar;

x- A (3)

Addition and. subtraction of matrices, - as algebraic addition of corresponding

elements of the matrices. (Corresponding means situated at equal places,

havving the same address or coordinates)

A -I +C= D -(d-4) where d<~j a~j-h 6 *

(4)

Addition and subtraction are associative and. distributive but are, of course,

restricted to aggregates of matrices which have all the same number of rows

and the same nu.mber of columrs.

Multiplication of a vector ýy another vector - the familiar scalar prodauct

of vector algebra is written as;

_ARO-ELASTIC_ ANXD1? STRUCTURES R-SE-AIRCH
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and with it, the ralti-olication of matrices by vectors and matrices are easily

defined. The I indicates transpositions of rows and columns. (The dyadic

product of vectors is not needed here.)

.ultiolication of a matrix by a column-ve - is a new column vector whose

i-th component is the scalar product of the i-th roa vector of the matrix with

the column vector:

A(Tjb/ •(6)

Multiplication of two matrices, - is a new matrix whose ij-th element (that

is, the i-th component of the J-th column vector) is defined as the scalar

product of the i-th row vector of the first factor-matrix into the J-th column

vector of the second factor-matrix. The two matrices must be compatible, i.e.

the number of the elements in the rows of the first matrix must be equal to

that of the elements in the columna of the second. Symbolically the product

is defined as;

I1- 1 Ua b "-: -I (b

*~ ~ L Kf,

The matrix product is associative, distributive but not, in general, coz2uta-

tive. The following relations are true;

o!~ a A (8 C))
(A -t- ACT. +AB#A

9 AFPrn.F[_AAT~i AND S;TRIfCTIHRFA RF'SFARCH-



MASACHUSETITS INSTITUTE OF TECHNOLOGY
Depaurtment of Aeronautical E-gineering

• CONTRACT NO. 15 ori - 07833 PACIE 7

Slica in of a matrix w:ith B eil•rc•v ul-ar•z n

ijapon&l matrices. The leading (or main) diagonal of a square matrix is the

Sline which contains the elements with tvo equal subscripts, (ail). It is

only defined for equaee matrices. A matrix whose elementg are all zero is

called the zero-matrix. If at least one of the elements of the leading diago-

nal of a square matrix does not vanish, while all others are zero, then it is

a dponal-matr~ix A diagonal matrix with elements all ecual to unity is

called jnit-matrix. A diagonal matrix with elements all equal to a scalar

is ealled a ecalar-matrix.

Th~e unit matriz,

ha5 the property, AE= EA==A . 9

The diagonal matrix, 0) 0 C "

can either premultiply or postmultiply a matrix A yielding LA and

respectively. Premultiplication by a diagonal matrix multiplies the rows of

the second factor -, poetmultiplication by a diagonal matrix multiplies the

rows of the first factor - by the corresponding diagonal element, viz.:

It~ 31 -d -~* Q, V (10) I
'Repeated products of matrices with the same factor are written as

powers of that matrix. The zero-th power of a matnrx is defined to be the

uXnit matrix:

AERO-EIAST1C AND S[tJ.ICTUU RESEAR-ICH
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Operations on matrices that are frequently used are defined next.

TMasposition, - is an interchange of rows and columns and designated by a

prime K Thus The transpose of a product is equal to the product

of the transposed factors, in reversed order,

(AB8) e M A' (12)

f or, if C -- AB1 0, bý YCcj') +-hen
C I

I (c< '-(c (; Q b,. K . , = S'A'.
The inverse (or reciprocal) of a matrix, - is defined as that matrix

whose premultiplication, or poetmultiplication, with A gives the unit

matrix E . viz.:

A=AA" E.

The theory of determinanrts shows that the ij-th element of the inverse matrix

is equal to

IA (14)

where c. f, ai is the cofacto of the element -;. , and det A - IAI -

determinant of the matrix A .

Yore details may be found In any toxt-book on linear algebra. An easy oxpoei=

tion is W. L, Fern-ar t s, Alebra, Claredon Press 1941, and a very clear and

m A rnr§r ri A c'ri-' & 2!rN e-ym'Tý i r ý.r re nr'- ,-.
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more advanced treatise is R. Larm-ahl ts, M-atrizen, Springer 1950, (in German)

The inverse of a product is equaal to the produc'.. of the nzvorse of

of the factors in reversed order:

(A B)~'= A(5

for then-orly: ABAB) ABA AEANe AA~t E.-

Frequently multiple matrix products will be encooutered which

originate from multiple summations, and the problem of writing such sumnations

as matrix products arises. Thus a few typical matrix products will be written

in summation form. Only the iJ-th element is listed. The ranges of i and J

are one to a antl one to n, respectively.

1. E.M~le: the simple sutmmation s .j r - ~ I a2w 1>ý a Eo ' 6 sr z V4,

If the order of the indzices in the second factor were to be reversed this

summation would coincide with the definition of the matrix product AS .

As a aim-ultaneoue reversal of the indices and transposition leave the second

matrix ~unchan~ged, = lb,) , the following is true:

If the individual products ac,-Kfb, in the sumat ion I &- b 16)

are multiplied, or weighted, by factors, , that is, if the summation

" 5 ib•• -a/ 1e given, observe that the weighting factor (or numerical

intagration factor) carries the column index k of the factor cZaW This

means tnat every colu=n of the matrix A is maltiplied by a certain factor

A17rO-F1 AC71( ANn. TUCT U~rTES4 P!ZPAI)C
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c4. The second of the equations (10) on page 7 shows that such a matrix

is the product of a matrix A , postmultiplied by the diagonal matrix

Thus one obtains:

(tA&~):((,K4),) AD3'()

which is also equal to, A(BD)' ;i

2. E ýlmve: given the matrix 5 whose iJ-th element is defined by the double

sum: -= b, C• . The object is to write S as a matrix product.

If one sets p e, . a,,, , the problem is reduced to that of the first ex-

ample, for than, =j - b- C,,.1  z ,c 4

This is the i}-th element of the product PC , where P=AB , and, since the

matrix product is associative, there follows:

5 = (o-a-6, ,)-(a,,) (bA4)(c,,..,) =AB8C

If the two summations, over h and k, are weighted with two sets of

factors, say, V=fk) and /zMy) , a double sunnation of the following type

is obtained, -S ý'ýK CQ.• ný M , and it can (using the result of the pre-

vious example) be written as the iJ=th element of the matrix product listed

below:

S W(sB) ANBMC N, ( 0(F. h,

If tne order of the indices does not agree with the one lsted

Sabove, transpositions must be made. Not all sunmations can, of course, be

written as tvnicaal elments of matrix products: the indiceas of the factors

A rO-E-LZ11%'AStC AN41D S-T1RUCU IRESEAC
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must be such that they can be arranged so that the first index of a factor

is the same as the last index of the preceeding factor. The nu=ber of pcssi-

ble weighting factors is the same as the number of summations. So, for in-

stance, the quintuple sum: S,,,C - 0 f C e f M ,where
or- CK K r h rv e M U

mkt hl' omV Pn, qr are weighting factors, can be written as the ij-th ele-

ment of the matrix product: S - (Sj) - AMBNCC) DELF.

Summations, as they have been illustrated in the two examples, will be

encountered wheLh certain integrals are evaluated numerically.

2. Series gaons of Arbitrary ,Fanctione

Another concept of greatest importance and frequent application is

the problem of the series expansion of arbitrary functions. It will be re-

viewed briefly, in somewhat more general form than it is found in the usual

texts of methematical physics, such as H. & B.S. Jeffreys, Mathematical

Ph__sics, Cambridge University Press 1950, or R. Courant & Hilbert, Methodez

der mathematischAn Physik, Interscience, New York.

Formulation of the problem:

Given P. set of no•l-overlapping subintervals of the line, i.e.

intervals of the form: ai L- x d bi. In this are defined a piecewise contin-

uous function f(x) and a set of functions, designated by All the

Sfunctions are subject to the following restrictions:

() '_'ey must be Integrable square, i.ti. their squares must be integr-

able in the interval.

(2) All inner products of the functions must exist in the interval.

R~ecall that the o of two functions g(x) and h(x) overx

the interval a x. x b is defined as!

Arr CV :'i17 A c-r14' A ArrN c -n~t "rT 10VC nE7Qzr' D'(LI
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A

The in-er product of a function with itself is called the aorm of the function

arAl written as:"

!Rtroduce the following abbreviations:

(f, ") % the ,m -component of f in the r,,s.

It is desired to approximate f(x) by a linear sf.aeggte of the 'Is,

f ['X s 'Q cf, CX7 (19)

in such a way that the approximation is best in the least squared error sense,

i.e. that the integral over the square of the error is a minimum, viz.

Nt J('C-~d /I~-l~ff) Mi~nimnum- (20)

The problem consists now in determining the exanasi~n coefficients

a'Uin such a way that M(x) takes on its minium. value. This implies that all

the partial derivatives of M with respect to all a, must be zero:

<1/, for all/,o a, 1,2, ... n. (201)

This set of n linear non-homogeneous equations determines the av.

Carrying out the partiAl differentiation:

and noticing that ~ ,there follows.

A DCn ri A (YT'1C A MnT' cT'rn Tor'm tT-0 ryTc-0 L r',rlr~ A ~'1*~h LJ ,JTX-D



M-ASSACHUSE'TTS IINSTIT67E OF TECID"HNOLOGY

Dc-p~utment of Aeronautical Emgineel ing

1 CO:NTRýACT NO. N5 ori 07833 PACE 13

2 dx Cvancelling the factor -2 and perfoz'mingv-

the mnultiplication ir, the integ-rand., one obtains:

I. (P-0 ao is a constan~t faotor)

which can also be written more conveniently as an equality of inner products:

With the abbreviations (18) this equation can be written as:

c % S a(21)

where 16 is the matrix of the band. C an~d.a are the column vectors:

Equation (21) has tha solution: a(2-2)

The ij-th element of the laverse matrix is given by: (b ~C f. bi./\\BI'

By virtue of the imposed restrictions, C exists (i.e. is finite),

and thus a exists if,and. only if, f3- exists. This implies that the

determinant of the matrix must not v-anish, viz.

ýý* 0 , (23)

If one writes this in expanded form, and introduces the definition of bi,

oearrives at the Ifundamental equation, the so-Qalle~. jam ýian,:

~~ (23')

wh iihte functions must satisf'y, in order that the exumanson (19) is

A~~~~ Tf, I i1f Tr% C-T'!71/- ?,-rlC Tn ~r i A RCHL1
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The aon-vanishirg of the 'ramian implies that the £*unctions

are linearly independent, for, if this were not so, a relation

d= o (24)

with not all coefficients di zero would be true. To prove this, note that

from equation (24) &V of the c a can be expressed as a linear combination

of all others. After introducing this into the equation (231) one obtains

a determinant with a column that is a linear combination of the other columns.

But fuch a determinant is always zero, hence equation (24) cannot be satisfied.

Returning to the expansion problem, the approximation f(x) (eq. 19)

becomes with eq. (22)

Obviously M(x), as a definite integral with non-negative integrand,

is never less than zero. From this remark a generalized form of the Bessel

inequality and the Parseval ecuality can easily be derived.

M was given as:

Expanding aneL carrying out the integrations, with the abbreviations (18),

this becomes: iv7- 2a4o~) j r : }
af -Q c., a,, a-A.

and. introducing aL, from (22) as C ,one obtains:

S 2 Y' -

[ AERO-ELASTiC AND STRUCUTURiE RLESARCH -
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Since k I is the product of a matrix and its inverse and thus equal

to the unit matrix, one obtains fimna~ly

the generalized Bessel ine~qalityc tcAF (25) II

As the right-hand side of (25) is independent of the range of the summations

of L.- and A4 from one to n, the summations on the left-hand side can be ex-

tended from one to infinity.

Now, there always exists a number n>-NN such that the squared

error M is less than ar arbitrarily small 6 , i.e.

rL f- -< e& if n ) N.

In the limit n-4- M becomes zero and the Bessel inequality reduces to an

equality,

the generalized Parseval equality: bK C j, C . (26)

The equation (26) can also be called a generalized completeness relation.

An infinite set of lineraly independent functions is complete if it permits

the approximation in the mean (least squared error sense) of any piecewise

continuous function to any desired degree of accuracy.

"It should be noted that the equation:

A. jf- a, v< ,or l.i.rM. ( f aCu, -- 0 (27)

(1.i.m. means limit in the mean)

does not imply the equality:

SAFRO-ELASTIC AND STRUCTURES RESEAIRCH
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The latri rl assursad, ifthe sequence of the (0,92,j converges uniformly

in the subset of the line, because only then is it permissible to move the

integral sign past the summation sign.

Ve•ry important for later applications are the statements:

1 : A piecewise continuous fumction is uniquely determined by its ex-

pansion coefficients in a complete system of functions; or also,

Lemma 2: Two piecewise continuous functions are identical if they possess the

same expansion coefficients.

The proofs follow from the fact that the difference of two such

functions with the same expansion coefficients has an expansion with all

coefficients equal to zero. And thus, by virtue of the generalized Parseval

equality, its norm vanishes. But this implies that the difference itself is

zero, hence the two functions must be identical. The expansion coefficients

in a complete set describe a certain function uniquely, even if the series

expansion converges only in the mean and not in the usual sense.

It has been shown so far that any set of linearly independent

functions is a complete set. Among these the orthogonal (and normalized)

sets occupy a preferred position, because the determination of the expansion

coefficients of a function in an orthogonal system is greatly simplified, as

will be shown presently.

Two functions are said to be orthogonal if their inner product

vanishes, and they are normalized if their norm equals unity. Thus the set

(rl is orthogonal and normalized if it obeys the two equations:

orthogonality relation: Af = , f ,4t(29)

rnormalizing equation: / /or all w.. (30)

AFRO- VT ACT1C APir' TCD1 Te- DCC Orcr A DC!-
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"The equat ions (29) and (30) can also be united as

in whiich c•e the set (I* is sail to be ortho-normal.

With equaation (31) the matrix becomes a unit matrix and thus

equation (22) reduces to:

C L (32)

which determines the expansion coefficients. They are the components of f

in the set of the Y's.

The Gramian (23 t) is now equal to unity, and thus, orthogonal and

normalized eets of functions are certainly linearly independent. (This re-

mains valid if the orthogonal set is not normalized, for the Gramian is then

equal to the product of the norms of the members of the set.) With B a

unit matrix B-I is also a unit matrix, and the double sums in the generalized

forms of the Bessel inequality and ParsevaI equality become simple sums over

the c's with equal subscripts:

Besse! inequality Ae 4/ ' (33)
e efor orthogonal functions.

With equation (32) the appromimation £(x) is given by:

c~y~ (35)

which converges in the mean.

AER 0-ELA•,TiC AND STRUCTURES RESEARCH
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g-EAF= II I

TRM.NV3E2 VIBIATIONY OF STMAIGET BALS.

TE3 U•0HINIC4L PROL Mý

1. Tbh Differential Eqation of Vibration (The Differential Alroach)

Let a bean with variable cross section be defined as follows;

x-x is a straight line and N is a plane normal to it. 01 is the intersection

of x-x with R. The boun&ary curve f1 (z) fl(yz 1 ;X) is subJect to _f1ve

restrictions:

(1) 0' is the centroid of the area encloeed by fl;

(2) Y, and z, are the centroidal principal axes of the area-

moment of inertia of the cross section;

A:n ' A4ZnC' ANMl qTDIrrTiIDrQ DCAI~L-J
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(3) the y1 and za axes are always parallel to the y an. z axco

resnectivel-y;

(4). fi~x) is a functlio~n of x only and not of t~ime, i.e. the cross

:section does nuot chane its shape during vibration. (If the

crosa section is hollow, rigid stiffeners must be provided to

prevent change of shape.)

The fifth restriction will be formulated presently.

C"upposee that some forces p~x,t.) are acting on the beam in such a

way that thsyare in the x-y plane an normal to the x-axis. If the beam

was initially.at rest it will then vibrate in the x-y plane only when the

time dependent forces p are acting.

In order to study the motion of the beam, isolate a small slice

which is cut out 'by two negghborig normal planes R and V, apply the inner

forces between it and the remainder of the beam as, exterior forces and for-

mlate the equilibrium equations. These state that the a= total of all

forces and moments, including the inertia forces and moments, of course, must

vanish. Due to the simplifying assumptions, only two of the six equilibrium

equations (in Cartesian coordinates.) are not trivial, namely, that the sum

of thie vertical forces have a zero-resultant and that the s=m of the moments

about the z-axis have a ýzero resultant moment vector. 'The following figure

shows the isolated slice of length 4 x. The inner forces have been combined

into a shear force Q and a bending moment M. The indices 1 1 and &

refer to left and right. 1f the be~aste oscillation is in the x-y plane only,

then the i-•s'ltant of the ehear'-stress intensities olf the e.ross section must

be Parallel to the y--axis. It is known, however, that this requlirement can

AERO-E.LSTiC AND STRUCTURES RESEARCHi
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only then be fulfilled if the exterior force acts through the shear-center

of the cross section. As the forces D have been prescribed as passing through

the centroid of the cross-section, it is thus necessar7 to specify that the

shear center be in the xzy planeý It is also know-n that a&n axis of syvmmetry

of a cross section is a locus line of the shear center. Hence the restriction

which must be added is:

(5) the locus line of the shear centers of all cross sections

must be in the x-y plane, i.e. in the plane of action of

the exterior forces which is also the plane of vibration.

The cross section must vary gradually, otherwise the simple beam theory and

the theory of the shear center are no longer applicable.

(Detailed discussion of shear centers of solid cross aectiona can be found

in A. & L. Fdppl, DranK und. ZNang, vol. 2, paragrph 78, Oldenburg 1944,

Munich.) Some other dynamic restrictions will be discussed in latter sections.

M•e• MIe The figure shows the slice A x and
the resultants of the noraal - and

f/ shearing stresses on the left and.

right faces. The resultants of the

exterior and inertia forces are

designated by ,".X, and /'4.X

r C is the center of gravity of the
i I•,5 i

slice.

Neglecting the dead weight whic4 is an effect of higher order, the sun of the

vertical forces must be zero;

ApiCVFi A&TICm AhJN TTDTTrT1ITPPV PFARrCP
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v0

and the sum of the moments must be zero:

Dividing both equations by 4 x and letting 4 x approach zero, one obtains;

where the definitions:

Ai AX'c /ir e

have been introduced.

If only the free vibrations of the beam are of interest, the fore-

ing function p(x,t) is zero, and P and M become the dI'Alembert inertia forces

acting per unit length of beam axis.

Due to the postulated linearity of the problem it is permissible to

consider bending and shearing distortions separately. The total deflection of

the beam is designated by y(x,t), the deflection due to pure bending by a(x,t)

the deflection due to pure shear by A (x,t).

Thus y= ý tf ce -)

The following two differential equations e.rpress aý in teonn of the bendi-lng

moment M and bending stiffness El, and R in terms of the shear force Q and

the shear stiffness GAr. E is Young's modulus, G the shear modulus,

- • s/ 2 (v÷d), = Poisscns's ratio for lateral contraction, I = Iz the

moment of inertia of the cross section about the zI axis, Ar = A/k the reduced

cross section. The valse of the reduction factor k will be derived

AERO-E•F 5TIC' AND STRUCTURES RESEAIRCH
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later. 1

(2)

The inertia force due to the transverse motion of the beam is equal

to the negative -product of mass density per unit length of bean axis, IA4 ,

mu2.tiplied by the vertical acceleration A .P..- . Before writing down

the rotary acceleration term, which is equal to the negative product of the

mass moment of Inertia per unit length of beam axis (about the z1 -axis) times

the ang-ular acceleration, it should be noted that the bendUn distortion

2 rotates the beam slices. The shear deformation j3 merely causes adja-

cent slices to slide with respect to each other. (This is the simplified

concept of the Asimple" beam theoryl) For small deflections, the angle of

rotation is equal to the angle of the tangent to the beam axis, which is in

turn approximately equal to the slope a() . Consequently the rotary inertia

forces Der unit length of beam axis are given by H =-, (.p • as"de•7]

With these, the two equilibrium equations of the slice become:

- •, (a)

• " " /•4, •,,,'.' (,o•)a

With l '.-Iih = 0<- /( from (a)

G~~1-1 iI76 r0 ,(c)

Differentiate (c) with respect to x:

S-i''- >(,i~)' 9(I/'J[A,.,)'d , (T/A,) - o, (0)
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a&n Subatitute (b) into (d):

-(e)

E xpress M by y as follows:

IE

Elg+El WaAr)'ISI

S•) If (1IA.) 'a0 "'11-4/;

4,'ffeten ate w/ice w,11 respect to -

A( r

and4 introcluce (f) into (e):

+ /A(X7Ar)'Q " , x; iA,- /S C . (/)

Rearranging (g), integrating (b) and introducing it into (g), the following

I integ~o-4ifferential equation is obtained:

(E',"- - ( z)'+,AI.-,-,'<Ij/') +V-•l•,)f i -

Ij (3)
Fro= (3) all of the simplified equations 2A1sted. in the literatu.re can easily

be obtainel, for instance:
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Fee transverse oscillations of a bean, n inertia effects;

but e distortion. The shear resistance is theL infinite, i.e.

Poisson's ratio p ý -1, G = a and equation (3) becomes:

A4 ~ (4)

This equatioa is listed in K. Hohenemser & W. Prager, Zýh_ ik der Stabwerk,

Springer, Berlin 1933.

Free oscillation of a Drismatic bar, inciudinL rotary inertia and she~az

effects. Setting El, , Ar constant and carrying out the differentiations

in (3), Yields:

This equation is listed in St. Timoshenko, Vibration Problems in ?n ineerg,

van Nostrand, New York, 1948; where it is integrated for some simple types of

bouadary conditions.

Assning harmonic motion:

AjLK (6)

and introducing (6) into the equation (3) yields the ordinary differential

equation for the eigenvalue problem. YX is the characteristic circular

frequency of the vibration. The equations (3), (4), and. (5) become respec-

tively:

This is the differential equatioLý of the natural mod, including rotary

inertia and shear terms.

ArRO-Ei__LqjC ANDf STRIICTURS IR1EEARCH
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This is the differential equation of the natural modes, neglecting shearI
effects, but with rotary inertia effects included.

ET Ic * q1' (1IIM4e/AI /,r6 - (5')

This, t the .differential equation of the iatural modes for a prismatic bar,

Including shear and rotary inertia terms.

Iquations (4') vad (53) have been aolved iL Hohenemaei-P-rager'a

and Tinoahenkos texts for the case of uniform beams withrectangular cross

section. They show that rotary inertia effects become great at higher fre-

quencies, becaus, then the nodal points are close together and the contribu-

tion of the angular accelerations is of the same order of magnitude as that

of the transverse accelerations. It seems possible to solve equation (41')

also for non-uniform beams, say, for an exponential variation rf the height

of the beam. The method of variation of parameters will give an analytical

solution for the equation under the assumption that X is known. The real

difficulty arises when the boundary conditions have to be satisfied in order

to obtain the characteristic equation for the eigenvalues. An an.lytical

solution of equation (3'), followed by the boundary value problem, appears

to be much too difficult ezid tedious to be attempted here. Purthermore,

beams encountered in engineering practico have elastic properties and mass

distributions that can not readily be expressed by exponential series ard

po'ecr series aad It is co-cluied that the differential equation approacL i1

- APR(YP1 AQT-rJ AN) qTRIIM1ILF9 RrSFARfl- -
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not the appropriate ine for the problem. The integral equation methods an2.

variational methods will yleld practical solutions. Before these are treated

the derivation of the formula of the reduction factor "kO in A, = A/k is

given.

The picture below shows the side - and front view of a slice

of the 'bea~m acted upon 'by sheariag forces (ý only. Let it be assumed. that all

longitudinal fibres undergo the same angular deformation, i.e. the cross sec-

tion does aot change its shape. Denote by d8 the shear deflection of an

element of length dx. One obtains an

- equpation for d, from the fact that the

I [ exterior work done by k dtring deformation

Il is equal to the strain-energy (interior

work) of the shearing stresses produced

by Q. Q undergoes a displacement d and

Increases slowly from zero to its final

value Q. Ths the potential energy of Q,

1- is equal to:

i~e~~8/ ~(a)

The stra-L energy of the shearing forces is given by:

TA =o~n -f teg0Tal (b)

The volume 4ýates-ral ý-'V]/ is equal to dxfr5da'A since dV is infinitely thin

and r does not chAnge over the distance dx . The shearing stress inten-

sity is given by:

AI:Pn-71 Aq-nd- ANnf QTYTTD-iL~ocVQ;ý5A~Ci.
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where Sz is the static moment of the shaded area about the zI-axis.

Thus, one obtains:

(~alx1 / f-c'/V4 (/& (&7xb / d12<

and since Q. and I are constant for a given x (integration over y and z):

z4

Equating (a) and (c): Ae = A , there follows:

A

and solving for d&/ I

One now sets:

/~(A/l)f_(? 6ý)V2A

The factor k depends on the cross section only. With it the differential

shear deflection is given as:

which verifies the equation (2) on page 22.

Values of k for some frequent cross sections:

Rectangle: k = 6/5; solid circle: k = 10/9; thin-walled circle: k = 2.0.

For structural I beams one may take with sufficient accuracy the factor kI

IC Ind t e cross section of the web only: A/k an t'web * If one tak~es the

total area, k varies from 2.0 to 2.4 for very small and very large sections.

APFRn.FI A;T1C AND .R'rRIICTIJRF_. RFSKARCH
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2. Variational Methods. jnt lA ýroach

a) General Comment

In the first section of this chapter the eigenvalue problem has

been formulated, by means of a differential equation and a set of boundary

conditions. This diffet ential equation expresses an equilibrium equation

that must hold for any infinitesimal slice of the beam. But this is not the

only way of deriving the differential equations. One could have utilized,

more elegantly, Hpailton's principle. For the development of the energy

methods this principle of least action (as it is called) is the unaturaln

approach to the eigenvalue problem. A very short and neat development will be

given which is taken from G. Hamel, Thporetische Mechanik, Springer, Berlin

1949, and which does not presuppose a knowledge of Lan~zange's equations.

The derivation of the eigenvalue problem follows an article by R. J. M&hly,

Die geniAherto Berechmang von Eigenwerten elastischer Schwingungen anisotroper

KVrper, that appeared in vol. 24 of Zr.ebnisfe d er exakten Naturwijsenschaften,

Springer, Berlin 1951, wherein that author investigated the characteristic

frequencies of crystals.

The PEinoinle of Hwilton (of least action):

Let dm be an infinitesimal mass element of a system, w its vectorial

acceleration, &Z0  an exterior (impressed) force acting on it, and S a

virtual displacement of the particle. r is the radius vector describing

the position of the particle, V is its velocity which is equal to the rate

of change of 7, ý = l/d.t.

Then, % els principle states that the virtual work of the

E A 11C- A ND S TR I U R S R SE 1%
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inertia foroes is equal to the virtual work, 9Ae, of the impressed farces or

From it one obtains Lag-angels central equation (as named by Heran) by Writing

dm wý in a different way, i.e.:

But if the virtual displacements are possible d Y = S&dP, and

•4¶ Z iwhich is equal to the variation of

the kinetic energy.: .T Thus there follows the central equation:

Introducing the central equation (b) into Lagrange's principle (a), one

obtains:r

An integration between ti and t 2 yields Hamilt•ons principle in its general

form:

(ST - 1re) '

If the impressed forces possess a potential, i.e. if iAe is a

total dlifferential SAe. V- SU, then Hamiltonl:s principle appears in a

convenient form. ýSince the S- process is independent of the time variation,

may be taken -outtside the Integral sign::

AERO-ELASTIC " ANDE STRU" CT ' U "".. R""ESENRU-R H
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L ie the 7Ar-raagian function: L T ' U The: integral over L is called the

action, whence the name of the principle. The variation ,' can be pre-

scribed to be zero at ti and t 2 . Then one obtains the usual form of Hamilton's

p rinciple,
tz

and one says that the integral W f L dt is stationary in the actual

motion of the system.

If the system is an elastic continuum which vibrates freely (un-

influenced by exterior forces) then the potential U is equal to the strain

energy of the body. Thus one must express the kinetic energ T and the strain

energy U in terms of the deformations (displacements) of the elastic system,

introduce these into Hamilton's principle, and thereby obtain an expression

which determines the displacements.

b) Formulation of the Ei genvalue Problem

The free vibrations of a body are defined as the simple periodic

oscillations which are not inifluenced by exterior forces. Thus, the deflec-

tion of the centroldýl axis, which is representative of the deflections of all

the particles of the bar (as has been postulated), can be expressed as:

Y(xt) =y(X) sin (Lt -V) sin (,,A4-), (4)

where y(x) was again divided into two parts, CY, (x) and ý3(x), which re-pre-

sent the bending deflection and shear deflection respectivelýy, viz.

GA. " (5)

AE.RO-LLASTIC AND STRUCTURES RESEARCH
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The kinetic energy cf the beam is obtained. in the following way.

Consider a differential slice of the beam. Its length is dx. The mass-lensityl

per unit length of beam axis in ?= J(x), the mass moment of inertia of the

beam about the 7i-axis ýsee figure on page 18) per unit length of beam axis

is given by '= '•(z). The translatory kinetic energy of the slice is equal

to 'Lx/2; and the rotary kinetic energy is equal to %dx/2. ( i !s

given by . T L.). Thus the total kinetic energy of the beam is expressible

as:

(6)

The strain energy, in term8 of bending moment M and shear force Q,

is given as U(j S-zdEI # d2 GA . With equation (5) this can

be rewritten in terms of the deflections as follows:

S= -• EI(o("), t-. ,•'2a (7)

The expressions for kinetic and strain-energy can be put into a form that

shows better that they are quAdratic forms in the displacements, viz.:

V[ tL " a It t LR 3 ýa

where the letters V and R are used to iesignate the kinetic energy due to

vertical and rotary motion, and the letters B and S designate the strain-

energy due to bending and shear. Furthermore the rotation is similar to that

used for the inner product of two functions (see page 12). Comparing (8)

and (9) with (6) and (7) one finds tbe definitions:

AERO-ELASTIC AND STRUCTURES RESEARCH !
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1(12)

where )Z()

Hmilton's principle states that the variation of W must vani•h for

ay time interal t2 - tl* If one chooses this interval to be an integer

multiple of oscillation periods, then the integrals over co8 2 (4Wt +_r) and

su2( t + V) are equal, and one is left with the variational equyation:

9 ,B[(."-, " --S '~IIt/ ) - ýk(Vc~~ [ý )+REP /I 0 . (14)

This problem is equivalent to that of finding the extrema of the

so-called Rayleigh coefficient K(y) which is defined as:

K (ý =- * S(15)

and these are, by virtue of (13), identical with the characteristic values

i i2. For, if one sets out to find the extrema of a quotient. (u/v) and

designates any such extremnm by (u/v)extr", one knows that the variation

of (u/v) must be zero at every extremum, i.e.

S(u/V) = 0;

and carrying out the variation, one obtains:

(LA-/Lr) (Lr & LL V u

Since v # 0,

( .o ,,-

Thus SCLL-1-1)= is equivalent to f2nding the extroa of K(Y).

AEOELAST.C AND S NLJ.IUCT~ RM J'fl~-
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There exist two methods by which the quotient K(y) can be minimized:

(i) One makes K depena on a series of arbitrary parameters &., a,

. .ar, and determines these parameters in such a way that the

function K(y; al. .an) is a minirram. :his leads to the re-

quiremernt that n equations:

--- - O 
(16)

be satisfied. The equations (16) are a necessary but not

sufficient requirement for the existence of a minimum, and it

can be demonstrated that they give an upper bound for the high-

er eigenvalues. (See for instance L. Collatz, Eigenwertproblem,

2. edition, pg. 274 etc.) This method is usually associated

with the name of RITZ.

(ii) One tries to make the coefficients of the higher eigen-fre-

quencie_ (c 2 9 c3 .... ) small with respect to that of the funda-

mental frequency c1. This leads to the method of successive

approximations (Iteration). After having found the first

eigenfrequency one will eliminate its component from the

Ray•ieigh coefficient and then again try to make cjo .1.

small in comparison to c2. Thus one obtains in succession the

first, -econd,.... modes. The great disadvantage of this pro-

cedure is the fact that it is very cumbersome to '1sweepm (or

to free) the Rayleigh coefficient of the components of the

modes that have already been iterated. As the nuecrical labor

increases rapidly for the higher modes successive iteration

=ethod.s will not be treated here.

AFRO-ELASTIC AND STRUCTURES RESEARCH
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c) The Ritz Proce&ure

Let y(K) c<(x)t 3(x) be expressed in the form of a series

2;"" n

with Yj(x) =+ XL (%) +

ThA functions yi(X) have to be linearly independent and they must

satisfy the conditions of constraint (boundary conditions). Then B,S,V,R

become positive definite quadratic forms in the coefficients ai, (see also j
Collatz, Eigenwertiorobleme) and are given by:

V8y'l R-a'o-]-ro.]a.a- ; with V% (B8)

,, S[a,a] sj, th aS.

From (10) it is obvious what vj, ] means: it is the value

of the following definite integral (to be extended over the beam),

The matrices (viJ),(rni) (bij),i(iJ) are all symmetric. Thus the

characteristic values are all real. The Rayleigh coefficient K( , is an

extremum if the equations: MK/ = are satisfied, or multiplying both

sides with (V -t R), one obtains the more convenient form:

S AERO-ELASTIC AND STRUCTURES RESEARCH
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=VR3 b{BS~(1R jj

5ýý (19)

For, if one calls B S = D and V -- R = H, one has K = D/H which is the

furction whose extrema have to be determined, and it is a function of the

a Is,

The system of linear homogeneous equations (19) can have a non-

trivial solution only i the determinant of the coefficient matrix is zero.

This gives the so-called secular eguation (frequency equation):

det [ uij ti] 0

I (20)
where uij = (b -s)ij and tij - (v + r)- j

It should be observed that the coefficients of RITZ's determinant

(20) can be obtained directlZ from the coordinate functions Yi(x), as is

evident from equation (18), and it is not necessary to carry out the differen-

tiations with respect to the ai's. As the matrices (ujj) and (tjj) are sym-

metric and (tij) is positive definite, all roots are real and they can

'be ordered according to size:

ý':!- , .! 'Z ý6 . . . ý ý .I

By a known theorem of algebra, the ratios between the coefficients

a., that belong to a Ritz value •r are equal to the ratios of the cofactors

of ary row or column of ui - tjj

.,.-.-•,--.•-,EAS . A ND UT RUCT R, ., J . .SE
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The corresponding solution functions Y r(z) (or approximations to

the natural mode shapes, as they are usually called) are given by;

Yr (x) ai yi(j) (21)

The determination of the ari is equivalent to the simultaneous transformation

of the matrices (ulj) and (tij) into diagonal form.

The following lemma is added without proof. (It can be verified in

a way siilar to that used by H. J. Mahly in vol. 24 of Eebaieze der z-k'ten

Natlurw is s ensc _aft en).

TIhe Ritz values ýj are greater than the corresponding exact eigen-

values \ but they are not greater than the next higher eigenvalue i÷

If one adds another function y+ 1 to the Ritz expansion, which is linearly

independent of all yl ... ,yn' then the Ritz values P of this augmented

system can only be smaller than the corresponding_ ones of the initial system

2.. but they cannot be less than he next lower value ) of the initial

system. I .

It Is also possible to prove here that the characteristic vibrations

are no longer orthogonal, i.e. that the inner product of ani two different

ones, multiplied by the sqcuare root of the mss density distribution function,

does not vanish an:-- more. This proof will be given in the next section, how-

ever, where it will be less abstract. The reader can find criterla for the

convergenc, -f the procedure in the paper by H. J. Miihly which has already

been ....

SAERO-ELASTIC AND STRUCTURES RESEARCH
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d) h Coordinate ?unctions for the Ritz Procedure

It has been shown that Ritzts nroceduro requires that a set of n

linearly independezt functions y'%;(x) be chosen which nast satisfy the conai-

tio~ne of constraint of the problem. The choice of these functions will affect

the convergence and the exctitude of the procedure very much. If one had,

by pure chance, selected the eigenfunctions as, coordinate functions, then the

method would be exact. The closer the agreement of' the assumed functions Yj

is with the eigenfurctlions, the better the convergence will be. It is now

very easy to find, sets of linearly independent functions - that aSe even

orthogonal - which satisf~y all boundary conditions and which are very close

to the actual eigenfunctions, i.e. the eigenfunctiona of a uniform beam,

neglecting shear and rotary inertia effects, with the same conditions of con-

straint as the one to be analyzed. (K. Hohenemser & W. Prager:, 2Xgimik der

Stabwerke, Springer 1933, have discussed this at great length and have showm,

by m e==ples of structures with very uneven disnribution of' mass density

and moment, of inertia per unit length, that the so-called. uniform beam modes

are the best coordinate functions to use.)

Tables for uniform beam modes can be found in many text books,

notablv Lord Raylei-h. Theory of Sound. and. Ln the text mentionad abnva. V-

tenBsive tables are added. to this report.

Equation (4) shows that it is also necersaz7 to kmow the bending

deflection and shearing deflection separately, and thus the problem arises

as to how to obtain 'V(x) and. ý3 (,x), if their sum y(x) together with the

elastic properties o~f the beam are given. From equation (5) one notices that

A~~OELSTCAND STUTRSRSAC
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both M and Q have to be obtained, in order that C:/ and can be obtained

by iategrations. In terms of a loading intensity p(x) per unit length of boam

axis, q and M are given as first and second integrals of p:

~. -S ~ M ~~ -f'~7 (2,2)

Differentiating (4) twice with respect to x, together with (5) and (22). one

obtains the folloving general relation between deflection y(x) and load inten-

sity p(m):

jY N) %1~6 A,.) f P'dx (23)

which reduces, for prismatic bars, to

! --- (M~>+ 2(t+1)-L P j rSSPd (23')d1 ErLA GAr

(See for instance S. Timoshenko, Strength of Materials, vol. 1, pgo 171)

The solution of (23) for p(x) with a given y(x) would be a very

cumbersome undertaking and could, in general, not be carried out analytically.

But remembering that the Rit2 procedure requires only functions that satisfy

the boundary conditions, and that the uniform beam modes are utilized because

they insure rapid convergence, one can modify the problem slightly and obtain

ci0. (x) and (3 (x) by the two following procedures:

(i) Take the mode-loads of the uniform beam. These are the static

loads that produce the mode deflections. From these one

obtains the bending deflection Cý and shear deflectlon "3

(The first eight mode-loads for uniform beams with various

boundary conditions are tabulated -I this report.
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~t)If uniform~ be= modle-load~s aro riot available, estimate the

lonation of the nodal points an. app•_y alte-nate uniform loads

between these nodes. Then, calcalate the bonding - and ahear-

ing deflections under these loads and use them in the Ritz

exnana ion.

The following picture illustrates how the third of the linearly

independent functions, Y3 (X) 0O3(X) -t •(x) can be obta~tned.

(The load-intensities pVP 2 ,P 3 can be equal, or can be determined such that

the points N. and N 3 do not undergo any static deflection.)

The underlying idea of this procedure is that these deflection lines

will roughly represent the natural modes and thus one is assured that the RITZ

values i are close to the actual A i and that the procedure convergesvalues

rapidly. The expansion coefficients (or 2Etiaipation feactors) of the r-th

linearly independent function yr(m) in the r-th natural mode:

Tr(x) = ar Yi (X)

will then be such that the factor arr is much larger than the other a rj3

(where J kA r). This means that the matrix (aij) is almost a diagonal matrix.

It is, however, not necessary to choose the n linearly independent functions

in this way, and one could, for instan.ce, also select the deflection lines
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due to a point load that is stationed successively in n different points.

(It is interesting to know that the :-th natural frequency of vibrating beams

is completely characterized by the location of the nodal points. In beams with

tboth ends supported one must not count one of these. The proof is given by

K. Hohenemser & W. Prager in ZAM't 1931, vol. 11, #2) j
The RITZ procedure offers the advantage that it provides the analyst

with relatively godo approximations to the frequencies and the mode shapes. It

has the disadvantage that the error in the approximation cannot be estimated,

and also that, if one adds another function yn + 1 to the set of linearly in-

dependent function {Ynl ' all the labor of solving the frequency equation (20)

has to be repeated. It has been mentioned that this addition of another coordi

nate function can only improve the results.

3. Itegral Equation Methods

a) Influence Coefficients

Consider a beam as defined in section 1 of this chapter. If this

beam is acted upon by a concentrated load P which is perpendicular to the beam

axis and located at a point designated by "Ji, then it produces at a point ij"

a deflection 8ij and an angular rotation 0 lj. Similarly, a couple at "J"

causes a deflection anij and an angular rotation qij at "i". The concen-

trated load and the couple shall both have the magnitude one.

Formulas for these influence coefficients can easily be derived

from the equations of virtual work. Let %. Qk (and M1k, k) be the bending

moment and shear force in the beam due to a unit force (and a unit couple) at

"k". Then the above listed influence coefficients are given by the following

integrals to be extended over the beam:
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+

/E 1) x+ 16(A,

They obey Maxwell' s reciprocal laws:

as is evident from (1). If the point tiO has the coordinate xi x and UP

t&e coordinate xi C ý , and if both x and • are considered to be inde-

pendent variables, then the four influence coefficients become influence

functions.

b) Influence Functions (Gzeen.s, Functions)

Let the influence function corresponding to the coefficient •j be

designated by g. It is clearly a function of x and ý , g . g(x; ), and in

view of Maxwell's law it is symmetric in the variables, hence:

g~; ) =g(i ; X)

The determination of g(x; J) is sufficient, for, the remaining influence

functions can be obtained by partial differentiations.

aaI. The influence faction of angular rotation due to a point load is

equal to the partial derivative of g(x; ') with respect to x.
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The following aketch illustra-es this.

In order to obtain the defj.ecti'n in-

-- !P= 1 fluence due to a unit moment, obsexve

: I that a unit moment can be considered

"_ 7 as the limiting case of a ,couple,

Sg•x;~) - , which is subjected to the

/ ~x restriction: ,IMi, (Pa) =

The deflection at x due to a load P at

Sis giv~en'by g(x; .6~ P,

•---- 4a¶P and thus the d eflection at x due to the

couple P a is equal to P{g(x, +

- g (x; q - With P this

takes the form: %Wt{( .+U-g(:i,)} •

In the limit L6-•O the deflection at

x due to a moment h at

•21 (x(,

consequently:

Lemma 2: The deflection influence function due to a unit moment at • is

equal to the partial derivative with reppect to • of the defleo-

tion influence function for a unit force at .

Lemak 3: The influenoe function for the angrular deflection due: to a Uzit

moment, is equal to the partial derivative with respect to X and

S AERO-ELASTIC AND STRUCTURES RESEARCH



MASSACHUSEETTS iNSTEFUTEE OF TrECHNOLO0GY

Department of Aeronauticall Eng4  - ing

CONTRACT NO. 215 ori - 07833 PAGE 43

Sof th~e deflection in-fluence function for a unit Iforce at

The following sketch illustrates this.___

It is pointed out that the relations

just icri7ed are not limited to the Green's \'-.-\

functions for the &eformations. They are equally _ /

valid for those of the shear force and bending

moment. ' a

Lemma 4: The influence functions for the shear force and the bending moment

of a beam which is under the action of a unit couple located at

x g are the partial derivatives with respect to ý of the

corresponding influence functions due to a unit force at f .

The proof follows from the remark that one has only to require tuhat

the limiting value of the couple P b• be finite and equal to Th

-- l The adjacent figures show first a beam with

a unit force at 4 and the correspondiag

bending moment - and sheard!iagrams, In which

,i i" ,"FF7 a value at x is marked M(z; and Q(z;

SI , i I.

pI
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"Ne7t is the tame beam with a un it couple at

anud with the corresponding dilgruams for

Sthe boening moment band the shear force

_ _ _ _ [ote that the shear force is always the

';. ;. Ix-derivative of the banding moment, it is
M(I XHt

I eths onl necessary to obtain the Green's

function of the bending moment due to a unit

force. The others are then partial deriva-

I i __ tives of it.

I HI[L'! , Sometimes the evaluation of the Green's

function due to a unit couple is easier than

the calculation of the Green's futetion due

to a unit force, followed by partial differ-

entiatione. Then one will, of course, d-e-

termine it directly.

Formulas for the Greents functions of uniform bewm are compile& in R. •oark,
Formulas for Stress Eand $train, McGraw sill, New York 1943. The following

example was taken from this book.

Illustration: uniform bea=, simply supported, acted upon

-by a unit force, andr also by a unit couple.

M,,y . x The Green's functions, in the interval from

zero to • , are given by:
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One verifies here readily that the quantities indicated by a bar are the

derivatives of those without a bar.

c) Fox-_MLO~tion _Of .the Inteall Equation

Suppose that the beam oscillates freely. As shown in section 1,

every slice located at x a j is acted upon by inertia loadings which are

composed of the inertia force -FLAdf due to the transverse acceleration

Sand ths inertia moment - due to the rotary acceleration cC .

Let the deflection influence function due to a unit load at ý be g(x; • )

as has just been established in section b). Then the load at d

produces at x a differential deflection: -3(,9)t .

The deflection influence function g(x; ý ) is made up of two parts,

the deflection due to bending distortion only; c4 (x; ) and the deflection

due to shearing distortion only: (x; • ). Tms,

9%;f)= 0C(x (f3(:K;

According to Lemma 42 of the previous section; the deflection at

x due to a unit moment at 9 is equal to: ?3(-; )/a , and consequently,

the inertia moment -Z.'dg at 9 produces a differential deflection:

- _ d" at x. The sum of these two differential effects is equal to:*

AERO-F..ASTMC AND STRUCTUIRFS R.ESEARCH-
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One obtains the total deflection y(x) integrating over all the diffeientiatl

effects:

b

at

The natural modes are the free harmonic vibrations of the beam:

) (1)sia(wt+V) and, with W1 one arrives at the integral equa-

tion for the natural modes of the beam:

y+x aq TM* (2)

Equation (2) is a homogeneous, non-linear integro-differential equation of the

Fredholm type. The function Cv (x) &epends, as has been shown, in a compli-

cated way on Y(Z).

The equation can be simplified considerably if one sets: y(Xll

i.e. if one neglects the shear effects in the rotary inertia terms. This is

Justifiable, since for small vibrations and lower modes the function.s y(x)

and M(x) differ only very little and their respective first derivatives are

practically alike. Furthermore the approximation occurs in a term which is

only a correction term and much smaller than the first e~xpiesaion in the inte-

grand which represents the deflection due to transverse motion of the beam

only. (This question will be discussead in more detail in chapter IV.) With
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the slfpDliCmtion jL/'dxz dy/dx , equation (2) appears as

One can eliminate the derivative dyl/d in the integran by partiali

gration of the second term on the right and obtains then:

or also:;

Introduce the abbrevia.tions:

-b (4)

and recall the notation of the inner product of two functions, ther. (31) can

be written In the compact form:

gjo

Note w'ell that G is a function of x and a Green's function which is

.;ot symmetric, and y is a function of also, If it is in a round. bracket.

This bracket is a short notation for the definitf integral of the product of

the factors Inside, and, since G is also a function of x, which is not a-ffect-

ed by the Integration process, (G,y) must be a function of x. Similarly H

is a function of x and 9 , an y is again a function of E- , whenever It

is multiplied with another function. The vertical bar im-dicates that the

dif~ference of the values of the function ERy for b, and =a Is

CAWN CTDrT1 I'¢ RESEARCH



MAS.ACHUSET-TS INSTITUTE OF TECHNOLbGY

Devtm'eni of Aeronauticz1 Engin" ring

PAGE 48 CONTRACT NO. X5 ort - 078335

to be taken. Sttce x is not involved in this process of sTbtracting the lower

limit from the upper one, HyI is indeed a function of x. Consequentiy,

both sides of equAtion (5) are functions of x alone. If the simplification

o re~y is not made, equation (5) reads.

y(X) J'ý 9(.f C f
a j=

From equation (5) one proves now without difficmilty that the charac-

teristic functions are not orthogonal, for, let yi and yj be two eigenfunctions

and Ai and ' tAhe corresponding eigenvalues, then the two following equa-

tions must be satisfied:

S= (+,-yz) +

(~y,)+ Hydj

Take now the inner product of the first equation with respect to y , also

the inner product of the second one with respect to yi, subtract the second

one from the first one, and note that (yi,Yj) = (Vi,7i) then one obtains:

-A-Lj -,A((Gy;))yj) + (Hyj),yy) - (r~y~),j) - (syj.y~)

If one writes this out in detail, it becomes:

-

bb

+ bt•fj( ,xd - Ixfy()3t•d

Inverting the dummy variables ±n the second term, and combining then these
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two intograle by factoring out yi( 9)yj(x), one gets:

bb

i =a

If the beam were supported at both ends, then y would be zero at the ends and

consequently the second integral of the right hand side of (6) would vanish.

Since G(x; g ) * G( 4 ;z), one concludes that for th'• case the orthogonality

cannot exist. If the beam is clamped at one end, then the second integral of

the right band side of (6) will not vanish, and, in general, orthogonality

cannot exist. In a similar way one verifies from (5') that the eigenfunctions

are not orthogonal.

Only if rotary inertia effects are neglected, can one obtain ortho-

gonality with respect to a weighting function /iAI) for in this oase,

equation (2) reduces to:

b

Y 3 (7)

W ith the new function ý F • y this becomies:

and if yi, Yj and ) , are two differnt eigenfunctions and their

corresponding eigenralues of the problem, there follows:

AERO.EIASTIC AND STRUCTURES RESEARCH



MASSACHUSETTS INSTITUTL OF TECFNOLOGY

Deporbnent of Aeronauvici ca ierin

SPAGE 50 CIONR'Arc NO.195 ori 078~33

j ltiplylng the first equation by y (x), the second by yj(x), integrating

over x between the limits a and b, and subtraecting now the Becond fr.m tihe

first one of the altered equations, yields:
bb

j '

Interchanging the dummy variables x and • in the second product and coz-

bining it with the first one, there follows:

In section b) it has been shown that g(x; g ) = ( ;x); consequently the

right-hand side of (8) is zero, and one finds, that for i # J

b -

With and. Yj-ý this equation yielis the generalized orthogo-

nality relation (orthogonality with respect to the weighting function A )

S= ( (9)

or one may also state that the functions r and V, yj are orthogonal

in the conventional sense. With the terminology of chapter I1, section 2, it

is concluded that the eigenfunctions of the vibrating beam, neglecting rotary

inertia affoct-, multiplied by the square root of the mass density distribu-

tion function form an orthogonal set, which can readily be normalized. For,

j f) then:

/ A TR)
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which is the statement that the set Is ortho-normal.

d.) ~ oS~ o tha h.ier

The integral equation (5), or (5'), can in general not be solved

exactly, and the problem arises as to how to find approximate oolutions of

it. Ass•me that the exact solution can be approximated by a line aggregate

of linearly independent solutions y j(x) - or U i(x) - which satisfy indivi-

dually the boundary conditions of the problem.

!his is again a RITZ procedure. So let:

y(.X) -_ j (-X) _ Qj yj(1) = a awt o (11)

and introduce it into equation (5), which was:

y M A [ (GY) + H yj} (5)

This yields: aj Rc-%yA a j +Hajý i11, +H (12)

and one requires now that the loft hand side coincide with the right hand

side at as many points xj as there are unknown coefficients aj, i.e. at n

points. (See section f) for motivation.) This gives a sot of n linear homo-

geneous equations for the coefficients aj :

+l

with the abbreviations:
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1 H

vectorL=G~H(13)

one obtains the following generalized matrix eigenvalue equation for the

vector a

ya= La ('4)

This equation can be reduced to an ordinary eigenvalue equation by premulti-

plying both si46e with the inverse of the matrix L- L , which exists,

since ii is not singular; thus with LL = E. Ea-- a

Lya= Aa
and with L'y = , where D is the solution of the equation:

I Lx B=X (15)

one obtains the ordLnary matrix eigenvalue equation:

Ba -Aa • (6)

This homogeneous equation has a solution only if the determinant of the

coefficient matrix vanishes:
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WI
S Xquation (17) is the gneralized chairateristic equation, or the lam-bdA aqua-
tion, an&, rritten out in detail, reads:,

00

):,

It is an algebraic equation in w ,ihose coefficient of ,is equa.l. to

and whose absolute term is Thas it is an eqlatioz of the n-th &egree

in A if the matrix L is not singular. With this condition equation (16)

exists and one can obtain the characteristio frequencies from the secular

equation:

which is tne necessary condition that (16) possesses non-trivial solutions.

The matrix 8 is best obtained by solving the set of linear equations (15).

It is now necessary to examine hov the matrix L eq.(23), is con-

structed. Fwom esq. (4) one finds:

(-X;~~~ OIu 9)- (X; 0)

whara g(x; is) i the deflection influence function due to a unit load at

Zquation (3') states what integration has to be carried out. The i-th ele-

m-ant of G, Gij, is the value of the following integral at a point with the

coordinate x i and wiith the J-th coordinate function y j(x):
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C" __ (19)

The poimts xi are taken at regularly spaced intervals over the beam axis. Let

the point x u a correspond to i = 1, and x b to i u n; i.e., let the length

(b - t) be dlviden into Hn-l" equal intervals. From (19) it is appaxent that

every Gij is the difference of two values, namely the value of the integral at

the upper Limit miuus the value of the integral ab the lower limit. But Hij

is a similar difference, viz.

?9• •3X g (20)

and consequently Gij aznd Hij can be combined to yield ii which appears,

written out in full, as:

L), (i)a

The procedure, outlined so far, is known as collocation usin.M assumed

futnotions. It is, of course, not the only possible method for determining the

coefficients aj as well as possible.

Other Methods for DeterminixA the Coefficients a

A more accurate result is obtained - but with more work - if one

requires that not the ordinates of the approximating function be equal to the

values calculated from equation (12) at n discrete points (usually equally

spaced), but that the integrals over the n subintervals (usually of equal

length) be equal, i.e. the integral over the k-th subinterval ol: the left-hand

side of equation (12) shall be equal to the corresponding one of the right-hand

side of this equation. The integration process has the effect of making, the

mean values of the two fu•nctions of the left-and right-hand side equal in n
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subintervals. FormJlly this yields the following set of n linear homogeneous

equations:

ajY j (1y)+ H yj1dx (- )n(22)

where: IX, - 5-_ a and usually x - x
I ~i - i-I

One can, of course, write the values of the Integrals over the n

subintervals as elements of matrices,

Cydx dj [(, ) - Hyjjdx (23)

and put (22) into the form: C a= ), Da

or, Fa =A a with F= D C (24)

The frequency equation associated with (22) or (24) is given by:

JC-A DH=o or ýJ -ýE ý=0 -(2-5)

Still another method for determining the factore a is one based

upon le-a 2 of chapter I1. It was shown there that a function is uniquely

determined by its expansion coefficients, particularly that the difference

of two equal tfunctions (called the zero-function) augt haie vauuihing expan-

sion coefficients. From equation (11-22) it follows that these are zero, if

the components of the zero-function with respect to all the members of a com-

plete set of fumctions vcaish.

(For, or a,, OL /
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In the present caue, it DiItomaze eu to Ac~ yj) ~Hyj}

or, w•inch is the same, their difference equal to zero:

%Yj - a7(,y) }Hyl

Thus, if [ is a set of linearly independent functions,

(ayl -a QCf ,y)+ HyI • I , % o ) = ,2,...,=,... (26)

must be satisfied for every i, and the aj have to be determined accordingly.

This equation can also be written as

c~aj (G~y) + uys~ 9 (2?)

where i and J must have the same range in order that the aj Is can be deter-

mined. If both (yJI and. f M) were complete sets (with infinitely many mem-

bers), this procedure would give the exact solution, provided the series aj 7,O

were absolutely convergent. If only the first n terms of the sets are taken,

one obtains an approximation to the exact value.

Setting:

(6G y1) t H 7% 28

equation (27) can be written as:

Ha=•Ka . (29)

The particular choice of the complete set has a decisive influence

upon the quality of the approximation. The process Just described is usually

called the method of wei tin& fusictions, and it is said that in eq. (27) the

inner products of both sides with the weighting functions must be equal,
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An easy set to work with are the fuictions,

XO , 2, . ... z-;(30)

which requires that the a-reas of the curves represented by ajyj •an

areas about the y-azis are equal.

Another convenient set is that of the coordinate functions used in

the RITZ expansion,

y1 y2  y3 ..... , yn (31)

and, if they are orthogonal, i of equation (29) reduces to a diagonal matrix

whose elements are the norms of the y ls

Da= ;ýKa W4tin D= ~ ~I,;d=~y>~*(2 Y 9 Y-(,): V-X (32)

Premultiplying both sides by the inverse of the diagonal matrix: D
and setting •= there follows:

D1Ka- a a= or a ak (33)

where M -D- r The inverse of a diagonal matrix is simply the matrix

obtained by replacing the diagonal terms by their reciprocals, and is there-

fore again a diagonal =atrix:

Recalling the multiplication rule of diagonal matrices with matrices (eqol0,

page 6), it is seen that the matrix M is obtained from the matrix K by

dividing every row vector of by the corresponding element of the matrix
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D WriTten out Lu detall-

i 0

The ord~er of the characteristic values, ( = )Is now reversed..

One could, of course, also have used an ortho-normal set,

( yi Yj) =e -i
in the RITZ expansion and would then have arrived directly at eq. 33-

These last methods are sometimes called. methods of weightiM

functions.

The methods presented so far are based upon the -ssmption that the

integral equation (2), page 46, (which is to be solved) can be put into the

form (5) in which the first derivative of the unkao•in functtion does not appear

(see eq. 3 t), and. where the linearization . FEY has been performed. The

elimination of Y wa acLieved by a partial Integration, and in carrying this

out it was, necessary to calculate the partial derivative with respect to ý

of the Green's function R(x; j),, as defined in eq. 4, pg. 47: In applications

it is often diffie-ilt to perform this differentiatton, and in cases where it is

,ssier to obtain the influence functions nuimerically in the form of a matrix

(which is merely a funUctlon-table listing the deflectlons at a certaln point

due to a ruit load at various other points or the same point) one would have

to perform the dciffereatiatIons numerkcaly als•i. These are relatively cum-

bersome and, as with all dtfferentiations, represent rý loses of accuracy. Thus
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it is dosirable to treat equation (2) direct4y without iinearizing it and

without transforming it into the form (51), page 47. This requires a modi-

fication of the nethods that have been outllned, as is shown i-a the section

below.

e) A rozimate Solution of the non-Umear Latejo-Differentia

The equation (2) of section c) (pg. 46):

b
•(X) Y • f( ) (9),( + 2ILLU•()• • 2

where g(x;C 3)g(x; '13 , ,/g(j) , T($1 are known fuinctions, has to

be solved.

Let the unknown function y(x) ci,(x)+ P (x) be approximated by

a RITZ expansion:

y aj TjajL 3 o (X)] 11

where the coordinate functions yj(x) individually satisfy the boundary condi-

tions, are lLnearly independent, and are preferably rouxgh approximations to

the natura, modes. Take them, for instance, as equal to the deflections of

the beam dne to the aode-loads of a uniform beam with the same bo.L-drz condi-

tions.

The static mode-loads of non-uniform beams, neglecting the influences

of shear and rotary iAertia, satisfy the equation (see eq. 41, ahpt. III):

AFRO-) - ,%Tik 1,2 ..... ,n ....
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S The static daeflection of the same beam dus to a load p(x) is given by:

Comaing this equation with the preceding one, it is apparent that tha

natural modes are identical with the static defloctions due to the loads

for, the equxality of the right hand sides of bcth equations necessitates the

equality of their left-hand sides. The loads pk are the so-called ptatic

ao42 loads.

It has been shown that the function {{l' ykj are orthogonal.

From the last relation it follows therefore that the function ar

orthogonal. They can readily be normalised.

For a uniform beam with both ends supported the modes are trigono-

metric functions (sine waves); other support oonditions yield products of

trigonometric and hyperbolic functions. It the uniform beam is gradually

transformed into a non-uniform beam, the =odes transform (as do the natural

frequencies) continuoutly into those of the non-uniform beam. Their shape

still resembles the sine curves (or modified sine curves) of the uniform

beam. The mode loads of the non-uniform beam, howv-er, being products of

the normal modes (or _noral functions as they are also called) and the mlss

density distribution f)Aiction pL , will lock very much different from the

smooth mode-loads of the uniform beam. The following picture shows on the

left the (second) mode and the corresponding mode-lo.d of a uniform beam.

On the right is the correspoading mode an& mod6-load of a non-uniform beam

with the same conditions of support.
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Thus, it is indeed obvious that thel product of Y,, times ýA (variable)

resembles /" Y. very =uoh, and it is concluded that the coordinate func-

tions In the Ritz expansion (11) ought to be obtained as the static deflections

due to the loads which are the product of the uniform beam modaes times the

mass density distribution function ýA of the non-uniform beam.

The evaluation of yj and 04j does not neoessiate additional cal-

culaltions, since Ya' has to be obtained as the sum of 06j and Pj .

After this excursion on a rational choice of the coordinate fumc-

tions of the RITZ expansion, there remains. to show how equation (2) is to be

solved.

Iw•o basicoslly different, aethods will be dirsused as iLl sect'ou d.),

viz.: R2ollo0alio• - an wegztLng funotiona methods. Since the underlyingg

principles have already beea established the argument need Lot be long.

The integral equaation (2), which must be solved, is of the form:

SAFRO.FF.A•_TC ANn qTRUCrTU.•E5 .RESIApr."•
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wherein the abbre-viations:

S_ YK ) (34)

have been introduced, and where the definite integrals are written as inner

products. Introducing the two RITZ eirpansions

y y aj j',4  aý (((

into (2') one obtains:

aý yj (35)

The coefficients aj remain to be determined in such a way as to minimize the

discrepancy between the left - and right hand side of this approximate equa-

lity,. Since n coefficients aj are "free", one must prescribe n conditions

which have to be satisfied:

cloti•n at n •p•oiAts is one possible set of conditions.

.rtho)oqAlity to the first n members of a cgmolete set of

functions is another one.

Sqllocatio& at n distinct pointE transforms the --pproxima:e equality(35)

into thE following system of homogeneous linear equations for the aF'a:

ELA STCALM' STR/TrT g'r,'E RESEARCH
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With the matricea and vector defined by:

witi (37)

the system (36) takes the form:

Ya= AMa (38)

where the mtri•x

N = K+ M (39)

has been introduced. The condition that (38) possesees other than the

trivial solution, a = O , ytelds the lbabda equation:

)[)y- 0 I!
0 (40)

for the characteristic frequencies.

As the coordinate functions yj and OC are not linearly dependent,

the matrix Y is not singular and one can premultiply both sides of (38)

by Y- With:

equation (38) appears as:

P& \ whare P~ N(42)
The associated characteristic equation ise

I'.I
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The matriLx Pis best obtainae, as solut ion PXof the matrix equation:

Y -X N x Y(44)

I where the n right nand sides are the n column vectors 9 •

'Wei7htin funotton method requires that both sides of eq. (35) be orthogonal

to n members of a complete set of functions L g5 , viz.

a.4( a,9j a 1 {K,yj) , +(M~) )}(45)

With:

= (S'i 4  KL = = K1 y K = Kg) ,(4,6)

rvxjrQt) 9 M ;N (m53  N = KNI L (K;j + 10iLj)

this reduces to the familiar generalized sigenvalue equ-ation:

ya =' &NA (47)

with the associated frequency equation (lambda equation):

ty- \aN aJý=o . (46)

IZgatn, N is not sangular, hlice one Lay also write:

PaNT U (aAH

where o ~
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with the frequency equation;

(50)

Xf the first n members of the complete set are the functions:

0 1 2 n-1
xO I, , 2, .. , x ,

it is said that one requires equality between the areas under the curves

representing the left - and right hand side of (35) and between their first

(n-2) moments about the y-axis.

Other suitable sets are the coordinate functions of the Ritz expan-

sion. If these are orthogonal a reduction of labor is effected. The expansion

functions which are reoommended for use are orthogonal with respect to the mass

distribution function 4 as a weighting function. Their construction has

been described in full detail on pg. 60.

Related to the weighting fvnction method is the modified collocation

method - outlLned on pg. 54,55 - where it is required that the integrals over

n adjacent subintervals of both sides of eq. (35) be equal. This method is,

of course, less cumbersome than the weighting function method itself, as the

integrations need not be carried out over the whole length of the bean, 'out

only over n amall portions of it. Numerical integration will have to be used

in pratt~Ale~lv all cases, and thus one integration process will yield the

eigenvalue equations, if onlv the ci.nulztive results of this numerical inte-

gration are registered at the n points. For, truly, the difference between

the partial sums at xi and xil1 is equal to the integre-l of the function over

the interval x,_, to X

9 AERO-.ELASTIC AND STRUCTURES RESEARCH
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f) O-n the Convergence of the Collocation Method

Collocation methods have been ased& in the preceding sections with-

out. however, demonstrating that they lead to results that approximate indeed

the exact solution. R.3aders who are familiar with the Fredholm theory of in-

tegral equations will know that collocation methods are identical with the

classical treatments of linear integral equations by Volterra and Fred.holm.

(A complete presentation of these methods, and in the author's opinion - the
clearest one, is given in Or. lowalewski, lnteAagleich en Berlin 1930.)

It is instructive to outline the methods once more and to state the most im-

portant findings of the theory with respect to application.

Consider that the following (non-hoaogeneous) linear integral equa-

tion has to be solved:
b

f (-A'x(;y)= (yK)

in the interval a :- x - b. Let x be a point In the interval ja,b]

Then at x - i the equation:

is certainly satisfied. Replace the integral by an approximating slun:

b n
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and. let the interval [ab] be subdtvided into n equal intervals, then one

obtains the following n einultaneoixa eqationa.

flx,) K2X2 y~j fj) n~ =ý 0

which are satisfied only approximately by the exact solutions of the integral

equation. xi and yj take on all values a+k(b-a)/n; (k = 1,2,..,n):

independently. With = .=;Kij =-K(Xý;yj)1FG,7IyJ

one arrives at the equations: + 2- Kzj f3 = or written out in full3

KLI + (1+ K2.1 ,

KK m2.fj2 + + qn

Cramer's rule gives the solutions of this system as:

r D (r n)....., n)

where D is the determinant of the coefficients of the unknowne, and Dr is

obtained from D by replacing the r-th column infl) by gt2-'9

(1.+ K,) K,1  ' K,, I(I+K ". Kr,., g, K,.r+i .. K,,,

K2  (t 4) K Kn KI1 -I5.. Kzrt4 Km

km = -I..f') j'~. n .II
]) = ... ... . .. ......... .r.

KMI K 7,X+ " •")l K•"r~f I "~~-,"i~ •• Kr I- ST% r" r , n n"
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Suppose ths f£have been calczulated, based on a subdivision of the

interval ia , bj into n equal parts, and the values of the ordinates are connect]

ed by straight lines, as the following sketch illustrates.

-- he question arises now as to what

happens if the subdivision is madebL [ smaller and smaller.

This necessitates the investigation of the so-called Fredholm determinant of

the Kernel K(x,y) which is the limit of D as the number n of subdivisions of

r"
La,bh tends to infinity.

The Fredholm theory ascertains the uniform convergence of the

anproximative solutions towards the exact solution as the subdivisions of the

interval [a,bl become smaller and smaller.

This important result justifies the collocation method-

g) The Method. of Station Functioans (another method of constructing

coordinate functions for the RITZ expansion)

Q.tite frequentlv one finds the suggestion that the so-called station

function method yields suitable coordinate functions for the RITZ expansion.

This recommendation will now be examined critically.

Recall that the convergence of the RITZ expansion is best, if the

assumed functions are as close as possible to the actual eigenfunctions of the

problem under investigation. In section e) it was suggested that the eigen=

iunctions of a Hneighboring5 problem be used to construct an approximation to

the node-loads of the actual problem, and thcn to calculate the coordinate

:Lactions as t'e static deflections under th.ese loads. These offer the great

ACCn1 . 1 AT• •N STRUCTUR ES .EAFDRCH
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advantage of being orthogonal fýxnctiorn, thereby reducing the numerical ca!

culations to solve the matrix eigenvalue equation. But furthermore they are

already close to the actual modes. The station function method is now dove=-

loped.

Suppose the linear homogeneous integral equation (Fredholm equation

of the second kind) has to be solved,

i(N) f Y y(51)

where the kernel K(x,y) is given. As in the Fredholm theory, replace the in-

tegral equation by a set of n linear homogeneous equations. The solution to

this set does not satisfy the integral equation exactly. Through the n points

son interpolation function can be fitted which permits the determination of

functional values at all points between a and b. Since n homogeneous linear

equations admit, in general, n solutions which correspond to the n zootg of

the characteristic equation, one provides for this fact by writing the solu-

tion as a linear aggregate of n interpolation functions:

ý (X) -ý(ý ;() (52)

Because f(x) mut take on the value f(xi) for x xi, it is apparent that the

functions gex) are sabject to the requirement:

jJ .00 eJ (53)

The functions g4 have to satisfy the boundary conditions and should, if

possible, be identical with the nor.al functions of the problem. It ia re-

called that the kernel functioL is an "elementary solution' of the problem
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from which all solutione can be built up by means of the superpositioA prin -

ciple. If h j(z) is a load-funatiou, then

j jKx.y hi (j)dy
is a solution of the problem which satisfies all boundary conditions. As a

matter of fact, this integral represents the effect due to the cause hi X).

Since every gi(x) has to satisfy n conditions, viz.

and. a total of n functions gi(x) have to be constructed, n2 free parameters

must be chosen such that all these conditions can be fulfilled. Consequently

the gi's must have the form:
b

04JK (X J) hj (y) dy ,(54f)
a

where the load functions hj(x) are given functions. They ought to be approxi-

mations to the mode-loads, under which condition the diagonal elements aii of

the matrix A a (a ) will be much larger than the other ones.

One is now left with the task of evaluating the matrix A so as to

Imake gj(Xj = ei* Let 3 be the vector: t he

vector {~M,..,~ with an element Z X/ y j()d then the
N a

equations (54) appear as:

If x takes on the values xl, x2,...,xn this becomes a set of n sizultaneous

equations. With the definitions: L9 4 = (') g1 j ) L ,they are coa-

veniently written as Ai (55)
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I-V ew f qaion G5) is the unit Matniz % axr.d tbýs 1

is the reciprocal of '

A (56)

Where d fr/and k L K( 1 y Khyu

(Noto the order of the indicesl) Once the al,'s are knowu, one may substi-

tute eq. (54) into eq. (51) to obtain:

b

or also:
i b

-KXNgL()d (57')
a.

This equation has to be satisfied for all x, especially for x = xj (J =,

... ,'n) and It possesses a non-trival solution only if

,etL-et. -4-2I = 0 -(wh~ere! f(xj) = f4) (58)

is satisfied, The roots of the frequency equation detormine n sets of solu-

t lonB f whieh, when substituted. Into (.52)~ give a continuous approxima-

tion to the solutiions of the integral equation.

Thb inteorations occuring in (58) will, ix general, have to be

carried. out numerically. Gaussi&n qtyadrature yields the highest degree of

accuracF for a given number of integration stations. it wil, however, sel-

dom be applied, because the values of the function will be given at equal

intervals. In ay case, the number of integration stations hap to be large

AERO.ELASTIC AND STRUCTURES R.ESEARCH!
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enough wo render the error of the numerical integration insignificant compared

with the approximation introduced with (52).

It is apparent that the station function method is very laborious.

In the present problem its application is not justified, because exact solu-

tions of neighboring problems can be found readily and be used in a RITZ expan-

sion. The merits of the station function method lie in flutter analysis of

aircraft wings and not in the vibration analysis of beams. There the method,

extended to two independent variables (planar problems) is really useful, for

usually only the lowest frequency is of interest and coordinate functions to

be utilized in a RITZ expansion are not easy to find.

4. Limitation of the Analytical Methods

In section 1) of this chapter five restrictions have been found that

must be imposed upon the vibrating beam in order that the present analysis be

applicable and it had been stated that other restrictions, of dynamical nature,

would be formulated later. To these attention is now turned. Recall briefly

the "integral methods" that have been outlined, viz. the variational method

and the integral equation method. The-first of these states that the total

energy of the vibrating body must be a minirz for every natural mode. The

second states that the natural modes are the characteristic solutions of an

Integral equation which represents al! possible vibrations of the body. The

unknown solutions are wrIttsn as linear aggregates of known vibrations and

the problem immediately arises of determining the degree of participation of

theee known vibrations in order to build up the desired solutions. This leads

then to an algebraic problem of solving a matrix eigenvalue equation. Every

solution vector corresponds to characteristic solution of the problam. 0ne

AERO.-ELASTI'C- Ai-ND STRUCTUERLJ'ý RRESLIC11
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wov3& be tampted to believe that any desired degree of accuracy can be obtalned.i

if only the Ritz expansion (i.s. the 1Lnear aggregate) comprised a sufficientlyr

la'ge number of linearly independent functions and corresponding particiDation

factors. But this is not sol Suppose that a Ritz expansion contains twenty

members and. that the eigenvalue problem has been solved. Then one may write

down the expansion of the, say, tenth natural mode of the beam and one knows

from mathematical reasoning that this ought to be a very good approximation
I

to this mode, if the linear aggregate represents the solutions of a neighbor-

ing problem. Let the beam under investigation have a length of ten times iLb

average height. Under these assumptions a half-wave of the tenth mode has a

length of about one tenth of the span of the beam. Therefore, the nodal

points subdivide the beam into sections with a length to height ratio of

approximately one to one. Between two adjacent nodal points the beam deflects

as if it were a portion of a continuous beam simply supported at the nodal

points. The simplified beam theory is, however, not applicable to such stubby Ibeams, since the stress-str-sin distribution across the beam is no longer

linear. Shear deformation becomes so great that the warping of the cross

sections can no longer be neglected. Furthermore the normal stresses perpen-

dicula., to the beam axis must be considered. This means that a solution satis-

fying •he rigor of the mathematical theory of elasticity is called for. Un-

fortunately no such vibration solutions havz been found and it is not possible

to compare the engineering solution with the elasticity solution directl4.

Bending problems, however, have bwen solved in great number and there it was

found that as long as the beam haB a length of more than three times its aver-

age depths, the engineerimg form- 1.s give a reasonable approximation to the
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behavior of the beez. The factor three cannot be taken religiously, for it

depends on the boundary conditions, the geometry of the beam; and. the degree

Sof accu-racy required. It is reasonable to assume that the vibration analysis

S obeys the same general restrictions as the static deflection analysis and,

S until more constraining requirements can be derived from exact analysis, it is

recommended that only those modes should be calcuilated by the methods developed

in thui report which yield half-wave lengths that are long in comparison to the

average depth of the beam (i.e. at least three to five times the &epts4.

The restriction just voiced should Lot mislead th3 an lyst to the

conclusion that is is useless to carry man terms in a RITZ expansion, believ-

ing that the higher terms represent the higher modes of the beam. This is not

true, for, if one had an analytical expression in closed form, say of the first

mode, and expanded this into a uniformly converging series and used the expan-

sion instead of the closed form in the calculations, then certainly all terms

of the expansion are needed to represent the mode properly. The limitation of

the method is of a different nature. It states only that the lower modes can

be calculated by the formulas given, because the equations are valid only in

a domain of low frequencies. Higher frequencies and modes do exist but they

cannot be calculated with a vibration theory thAt is based upon a simplified

boam analysts.

Furthermore, it must be emphasized that the beams to be Investigated

have to possess a symmetric cross section and the vibrating has to occur in

"the plane of symmetry. Zccemtric, fixed loads on the be*. ares thus to be

excluded, as no coupling of bending - and torsional vibrations Ie permissible.
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Only recently R. Heilig, Ingenieur- Archiv, vol. 19, pg. 231-254, (1951), has

&evelope! a rigorous solution for the coupled torsion-bending vibration of

prismatic, thin-walled, open-profile beams, taking proper account of the

warping stresses. An extension of this theory to prismatic bars of arbitrary

cross section encounters great difficulties which arise from the fact that,

at present, it is not possible to calculate the stress distribution in a pris-

matic bar of arbitrary cross section, with arbitrary boundary conditions, due

to bending and torsion. Efforts ought to be made in this direction, and the

above mentioned paper gives a good starti-.g ground.

The findings of this report are summarized in the following:

Lemm: The methods presented. in this report are applicable to straight beams

with symmetric cross section which vibrate in the plane of symmetry. They

yield satisfactory results for modes whose half-"ave length is long in compari-

son to the average height of the beam.
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